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Abstract
Rationale The use of ecstasy (MDMA) among young
adults has dramatically increased over the years. Since
MDMA may impair the users' driving ability, the risk of
being involved in a motor vehicle accident (MVA) is
notably increased. Minimal traumatic brain injury (mTBI) a
common consequence of MVAs—produces short- and
long-term physical, cognitive, and emotional impairments.
Objectives To investigate the effects of an acute dose of
MDMA in mice subjected to closed head mTBI.
Methods Mice received 10 mg/kg MDMA 1 h prior to the
induction of mTBI. Behavioral tests were conducted 7 and
30 days post-injury. In addition to the behavioral tests,
phosphorylation of IGF-1R, ERK, and levels of tyrosine
hydroxylase (TH) were measured.
Results mTBI mice showed major cognitive impairments in
all cognitive tests conducted. No additional impairments
were seen if mTBI was preceded by one dose of MDMA.
On the contrary, a beneficial effect was seen in these mice.
The western blot analysis of TH revealed a significant

decrease in the mTBI mice. These decreases were reversed
in mice that were subjected to MDMA prior to the trauma.
Conclusions The presence of MDMA at the time of mTBI
minimizes the alteration of visual and spatial memory of the
injured mice. The IGF-1R pathway was activated due to
mTBI and MDMA but was not the main contributor to the
cognitive improvements. MDMA administration inverted
the TH decreases seen after injury. We believe this may be
the major cause of the cognitive improvements seen in
these mice.
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Introduction

Driving under the influence of drugs is a well-established
cause of motor vehicle accidents. Evidence shows that up to
25% of car accidents involve drivers affected by drugs
(Drummer et al. 2003; Nochajski and Stasiewicz 2006).
One of the most common consequences of car accidents is a
traumatic brain injury (TBI) (Alexander 1995; Bazarian et
al. 2005; Cassidy et al. 2004). Most of these accidents
involve alcohol use, but recently, other drugs such as
marijuana and amphetamines have become a major problem
as well (Darke et al. 2004; Hooft and Vandevoorde 1994;
Movig et al. 2004; Smink et al. 2008). This terrible cascade,
drugs–car accidents–head injuries have become a signifi-
cant burden on the economy of the western world.

Ecstasy (methylenedioxymethamphetamine, MDMA) is
a synthetic drug, popular among young people for its
euphoric and energizing effects (Green et al. 2003; Morton
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2005). Studies have shown that ecstasy users are not able to
estimate their objective impairment accurately when they
are under the influence of the drug. Their lack of judgment
during intoxication puts them at high risk of a crash when
engaged in traffic (Hooft and Vandevoorde 1994; Kuypers
et al. 2009; Morgan 2000; Weinbroum 2003). Epidemio-
logical studies have shown that MDMA can impair
judgment and lead to reckless behavior such as speeding
and running red traffic lights (Brookhuis et al. 2004;
Drummer et al. 2003; Hooft and Vandevoorde 1994;
Kuypers et al. 2009; Logan and Couper 2001).

Traumatic brain injury (TBI) is a leading cause of death
and lifelong disability in individuals under the age of 50
(Fleminger 2008; Fujimoto et al. 2004; Morales et al.
2005). Most TBI cases are a result of motor vehicle accidents,
but there are other causes including accidental falls or sports
injuries. TBI occurs when an external force is applied to the
head. The brain is then damaged either from skull penetration,
rubbing, or colliding with the rough surfaces. Brain acceler-
ation, deceleration, or uneven rotation may cause additional
injury (Bullinger 2002; Gennarelli et al. 1994; Sosnoff et al.
2008).

In contrast to TBI in which a brain morphological
alteration is detectable (Graham et al. 2000), minimal
traumatic brain injury (mTBI) lacks diagnosable objective
structural brain damage and presents as a number of
imprecise perceptual cognitive symptoms (the so-called
“post-concussion syndrome”) (Hamm et al. 1993; Margu-
lies 2000). This type of injury accounts for 80–90% of total
brain injuries (Vos et al. 2002). The symptoms of mTBI
include headache, dizziness, fatigue, irritability, various
degrees of memory loss, attention and concentration
problems, and emotional liability (Kushner 1998; Ryan
and Warden 2003; Schreiber et al. 2008). We have
previously reported the use of a modified weight drop
model in order to produce a non-invasive closed-head
minimal traumatic brain injury (mTBI) in mice (Milman et
al. 2005; Milman et al. 2008; Tashlykov et al. 2007;
Tashlykov et al. 2009; Tweedie et al. 2007; Zohar et al.
2003). In these studies, we showed that our mTBI model
induces cognitive and emotional short- and long-term
deficits. These deficits in mice mimic the persistent post-
concussion syndrome that occurs in humans as well.

MDMA and mTBI share some physiological and cellular
destructive mechanisms including hyperthermia, oxidative
stress, and apoptotic cell death (Brown and Kiyatkin 2004;
Capela et al. 2009; Colado et al. 2001; Fantegrossi et al.
2008; Warren et al. 2006). MDMA was shown to cause
acute dose-dependent hyperthermia in many laboratory
animals, including mice. In both clinical and experimental
studies, hyperthermia in the acute phase of TBI caused
additional deterioration (Carvalho et al. 2002; Morales et al.
2005; Piper et al. 2005). Several studies suggested that

MDMA use causes oxidative stress (Cadet et al. 2001;
Colado et al. 2001; Gudelsky and Yamamoto 2008). In
TBI, oxidative stress plays a key role both in the primary
and the secondary damage (Bayir and Kagan 2008; Chong
et al. 2005; Shein et al. 2007; Shohami et al. 1999). Finally,
an acute dose of MDMA up-regulated and activated
calpains and caspases, traumatic brain injury (TBI), and
ischemia had similar effects on these pathways (Warren et
al. 2006; Warren et al. 2007).

As a result of these mutual processes, this study was
designed to investigate the possible role of these shared
destructive mechanisms in the behavioral, cognitive, and
biochemical changes following mTBI in mice that were
exposed to MDMA before injury.

Experimental procedures

Mice

Male ICR mice weighing 25–30 g were kept five per cage
under a constant 12-h light/dark cycle, at room temperature
(23°C). Food (Purina rodent chow) and water were
available ad libitum. The lighting during the light phase
was kept constant, and all experimental manipulations were
conducted during the light phase of the cycle. Each mouse
was used for one experiment and for one time point only.
The Ethics Committee of the Sackler Faculty of Medicine
approved the experimental protocol (M-08-040). The
minimum possible number of animals was used, and all
efforts were made to minimize their suffering.

MDMA administration

MDMA (±3,4-methylene-dioxy-metamphetamine hydro-
chloride, generously supplied by NIDA) was dissolved in
0.9% saline and injected intraperitoneally (IP) at a dose of
10 mg/kg in a volume of 1 ml/100 g body weight. All other
mice were injected with 0.9% saline. This 10 mg/kg IP dose
was chosen according to the literature (Green et al. 2009)
and fairly imitates a human MDMA dosage. One hour
following injection, the mice were placed in the weight-
drop device for the brain injury procedure.

Brain injury

Experimental mTBI was induced using the concussive head
trauma device described previously (Darke et al. 2004;
Milman et al. 2005; Zohar et al. 2003). Slightly anesthe-
tized mice were placed under a device consisting of a metal
tube (inner diameter 13 mm) placed vertically over the
animal's head. The injury was induced by dropping a metal
weight (30 g) from 80 cm height down the metal tube,
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striking the skull. Immediately after the injury, mice were
placed back in their cages for recovery. The sham mice
were slightly anesthetized and put in the head trauma
device without receiving any weight drop. The behavioral
and cognitive effects of the injury were studied at 7 and
30 days following the trauma. Biochemical measurements
were taken 24 h post-injury.

Physiological and behavioral tests

Temperature measurements Rectal temperature of the mice
was measured by a mice thermometer. Baseline values (in
degrees Celsius) were performed 30 min before MDMA
administration. The effects ofMDMAandmTBI on themice's
rectal temperature were measured at 1 and 4 h post-injury.

Staircase test Normal motor skills were assessed (Milman
et al. 2006; Weizman et al. 2001). Five steps made of black
Plexiglas are enclosed, each step is 3×11×7 cm, and the
height of the walls was 12 cm above the stairs. Each mouse
was placed onto the staircase floor individually, facing the
wall. The number of steps ascended, and the number of
rearing events were counted for 3 min. Before each session,
the staircase was cleaned with 70% ethanol solution (v/v).

Hot plate test Changes in nociceptive threshold were
assessed. The Apparatus consists of a metal platform
(30×30 cm), capable of being uniformly heated by an
electrical current, and is surrounded by a transparent
Plexiglas wall (28 cm) (Pick et al. 1991; Pick et al. 1997).
Each mouse was individually placed on the hot-plate with
the temperature adjusted to 52°C (±1°C). The latency to the
first jump response was measured; the cut-off time was 40 s
in order to avoid damage to the paws.

Elevated plus maze Anxiety level was assessed (Alcalay et
al. 2004; Baratz et al. 2010). The apparatus consisted of
two open arms (30×5×15 cm) and two closed arms (30×
5×15 cm) with an open roof, arranged such that the two
arms of each type were opposite each other (in a “+”
shape). The maze was elevated 60 cm above the floor level
(Hogg 1996). On the test day, mice were placed in the
center of the plus-maze, facing one of the open arms. The
time spent in the open arm was measured during 5 min of
observation. The maze was cleaned between animals with
70% ethanol solution (v/v).

Cognitive tests

Novel object recognition test The novel object recognition
(NOR) task was used to evaluate visual memory
(Hammond et al. 2004; Tang et al. 1999). The NOR

apparatus consisted of a black open field box (59 cm width×
59 cm length×20 cm height). The day before training, mice
were allowed to explore the experimental apparatus for 5 min
in the absence of objects. During the training phase, mice were
placed in the experimental apparatus for 5 min with two
identical objects. After a retention interval of 24 h, mice were
placed back into the arena in which one of the familiar objects
was replaced with a novel one for the test trial. As our objects,
we used a plastic bottle (diameter, 7 cm, height, 20 cm) and a
tin can (diameter, 8 cm, height, 15 cm). The kind of object
presented during the training as well as its position during the
test trial were counterbalanced and randomly permuted. Time
near each of the objects was manually measured. A mouse
was scored as exploring an object whenever it was within
1 cm from the object and facing it. The new object preference
index (PI) was calculated as follows PI ¼ time near newð
object� time near familiar objectÞ= time near new objectþð
time near familiar objectÞ. Objects were cleaned with 70%
ethanol between each animal. Animals that did not explore
both objects for more than 30 s over the course of the 5-min
test session (less than 10% of the time) were excluded from
the analysis.

Y maze test Spatial memory was assessed by using the Y-
maze, which was first described by (Dellu et al. 1992) and
then subsequently validated as a task requiring hippocam-
pal function and spatial memory (Conrad et al. 1996). The
procedure was carried out as described before (Baratz et al.
2010; Rubovitch et al. 2010). Briefly, the first run
(familiarization) was 5 min with two arms open (the start
arm and the arm called “old” arm), the third arm was
blocked by a door (the novel arm). After the first run, the
mouse was put back into its home cage for 2 min. The
second run lasted 2 min when all three arms were open.
Time spent in each of the arms was measured. Between
each run and between each mouse, the maze was cleaned
with 70% ethanol. The new arm preference index was
calculated: PI ¼ time at novel arm� time at old armð Þ=
time at novel armþ time at old armð Þ.

Dry maze test The dry maze test was used to assess the
spatial learning ability of the mice. Dry maze task is a
variation of the well-known Morris water maze (Morris
1981) that was designed for mice, which have less affinity
for water than rats (Whishaw and Tomie 1996). The dry
maze is comprised from a circular plastic arena on which 20
tiny wells (10 mm) are arranged in a circular manner. One
week before the beginning of the test, mice were put under
water restriction and were allowed to drink water for only
1 h a day. The dry maze test consists of three phases:
Training (pre-test) phase: all 20 wells of the arena are filled
with water (200 μl each); the mice were allowed to drink
from the wells for 3 min (two trials a day for 3 days).
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Learning (test) phase: only one chosen well was filled with
water. Each mouse was given 2 min to find the well (3 trials
a day for 7 days). Adjustment phase (probe): the site of the
chosen water well was replaced and similar to the learning
phase mice were given 2 min to find the novel place of the
well (three trials a day for 2 days). In all phases, mice were
placed at a random starting position, facing the arena wall.
Each mouse's latency to reach the water well was measured.
The maze was cleaned between each trial, and each mouse
with 70% ethanol solution (v/v), water inside the well was
changed.

Biochemistry

Western blots Whole brains were removed 24 post-insult,
and hippocampus and cortex (ipsilaterally and contralater-
ally) were immediately frozen in liquid nitrogen and
homogenized with T-PER Tissue Protein extraction Reagent
(Pierce, Rockford, IL), with appropriate protease inhibitors
(Halt Protease Inhibitor Cocktail; Sigma-Aldrich). Samples
were run on precast 10% Bis–Tris gels (Bio-Rad) and
transferred to nitrocellulose membranes. Blots were
blocked for 1 h with Tris-buffered saline containing
0.01% Tween-20, 5% powered milk, or 5% bovine albumin
(Sigma-Aldrich). Membranes were incubated for 2 h at
room temperature with antibodies against phospho-IGF-1R
(95 kDa) (Cell Signaling Technology) diluted 1:1,000 and
incubated with secondary horseradish peroxidase-linked
antibodies (Jackson Immunoresearch, West Grove, PA) at
room temperature for 1 h. For tyrosine hydroxylase (TH)
and phospho-ERK levels, membranes were incubated
overnight at 4 C with antibodies against TH (60 kDa) and
phospho-ERK1/2 (42+44 kDa) (Santa Cruz Biotechnology)
diluted 1:1,000 and incubated with secondary horseradish
peroxidase-linked antibodies (Jackson Immunoresearch, West
Grove, PA) at room temperature for 1 h. Bands were
visualized by enhanced chemiluminescence (Pierce Rockford,
IL) and exposed to an X-ray film. Protein band intensities
were quantified by using the TINA software. Uniform loading
was verified by stripping and reprobing with antibodies
against total IGF-1R, total ERK1/2 (1:1,000; Cell Signaling
Technology). Antibodies against tubulin (1:2,000; Santa Cruz
Biotechnology) were used to verify the uniform uploading for
the TH levels.

Data analysis

All results are given as mean±SEM and were analyzed with
SPSS 13 software (Genius Systems, Petah Tikva, Israel).
One-way analysis of variance (ANOVA) was performed to
compare all groups, followed by least significant difference

(Fisher LSD) post hoc tests. ANOVAs were used to analyze
the results of all behavioral and cognitive tests and for
western blot analysis results. For the dry maze, repeated-
measures ANOVA (RMANOVA) was used followed by
Fisher LSD post hoc tests.

Overall, 99% of the mice had survived the mTBI and
MDMA exposure. Five mice died within 24 h following
injury (two mice in the sham group, one mouse in the
mTBI group, one mouse in the MDMA group, and one
mouse in the MDMA+mTBI group).

Results

Evaluation of the mice for “basic wellbeing”

“Basic wellbeing” is a concept that underlies the combined
health and wellness. Four parameters were evaluated in order
to define the mices' “basic wellbeing”: rectal temperature,
motor skills, pain threshold, and anxiety levels.

Rectal temperature measurements were used to assess
the temperature changes caused by MDMA administration.
Significant differences were found between the groups
[F(3,16)=7.3, p<0.01] and between time of measures
(30 min before injury and 1 and 4 h post-mTBI) [F(2,16)=
26.9, p<0.01] post-injury. LSD post hoc analysis revealed
that major temperature elevations were observed in the
MDMA and the MDMA+mTBI mice compared to sham
group when measured 1 h post-mTBI p<0.01. The mice
subjected to mTBI alone had no elevations in rectal
temperature, and their rectal temperature as measured at
1 h post-injury was normal. All groups had normal
temperature at 4 h post-injury.

The Staircase test was used to assess normal motor
skills. No significant differences were found between the
groups as far as the number of steps ascended was
considered, 7 days [F(3,64)=0.17, N.S] and 30 days
[F(3,35)=1.17, N.S] post-injury. The number of rearing
events (an indicator of agitation) did not differ between
groups as well [7 days, F(3,64)=0.90, N.S; 30 days, F(3,35)=
0.09, N.S].

When the hot-plate assay was used to measure the pain
threshold of the mice, no differences were found between
the sham mice and all other experimental groups at both
7 days [F(3,83)=0.83, N.S] and 30 days [F(3,38)=0.24, N.S]
post-injury.

The elevated plus maze was used in order to examine
anxiety level. Time spent in the open arm of the maze was
measured. No differences were found between the groups at
7 and 30 days post-injury [F(3,71)=0.322, N.S] [F(3,76)=
2.00, N.S], respectively.

The findings of no motor impairments, no changes in
pain threshold, and no high anxiety levels stands for
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healthy mice, with no major deficit caused by either the
mTBI or MDMA exposure.

Cognitive tests

Novel object recognition (NOR) test was used to
examine visual memory. Overall, the mTBI and the
MDMA mice showed impairments in visual memory and
spent less time near the new object (low preference
index) compared with the sham mice. High preference
for the new object, similar to the sham group, was seen
in mice that were subjected to MDMA prior to injury
(the MDMA+mTBI group) (Fig. 1). One-way ANOVA
revealed group effect on both 7 and 30 days post-injury
[F(3,62)=3.53, p=0.02] and [F(3,63)=3.29, p=0.02], re-
spectively. Fisher LSD post hoc analysis revealed that at
7 days post-trauma, preference index of the mTBI mice
was significantly low compare with all other groups
(Fig. 1a). At 30 days, post-trauma mTBI as well as
MDMA groups had low preference index compared to the
sham or the MDMA+mTBI mice (Fig. 1b).

Short-term spatial memory was tested with the Y maze.
One-way ANOVA followed by LSD post hoc test revealed
group differences at 7 days post-injury [F(3,69)=3.30, p=
0.025]. The mTBI mice had low novel arm preference (p<
0.01) and were different from sham mice. All other tested
groups including the MDMA+mTBI group showed signif-
icant preference for the novel arm as seen in Fig. 2a. High
novel arm preference was found in all experimental groups
30 days post-injury (Fig. 2b).

Long-term spatial learning was tested by the dry maze.
The mean latencies to reach the water well during the test
and probe phase are shown in Fig. 3. In the pre-test phase,
no differences between the groups were found (data not
shown), and all the mice drank from the water wells. In the
test phase, 7 days post-injury, there were no differences
between experimental groups [F(3,55)=2.14, p=0.105 by
RMANOVA], a significant effect of test day was found
[F(6,18)=16.84, p<0.001] with no interactions between the
factors. At the test phase, 30 days post-injury, a RMA-
NOVA revealed significant effects of group (sham, mTBI,
MDMA and MDMA+mTBI) [F(3,55)=4.62, p<0.01] and
test day [F(6,18)=23.63, p<0.001] but no significant
interaction between these factors [F(6,18)=1.22, p=0.241].
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Fig. 1 Novel object recognition. a Low-preference index was seen in
the mTBI mice compared with all other experimental groups (F(3,62)=
3.53, p=0.02, LSD post hoc, p<0.05). b Low-preference index was
seen in both mTBI mice and MDMA mice compared with sham and
MDMA+mTBI group (F(3,63)=3.29, p=0.02, LSD post hoc, p<0.01).
*p<0.05 vs. sham #p<0.05 vs. MDMA+mTBI ^p<0.05 vs. MDMA
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Fig. 2 Y maze test. a One-way ANOVA revealed that the mTBI was
different from all groups and did not display preference to the novel
arm [F(3,69)=3.30, p=0.025], LSD post hoc (p<0.01). b Novel arm
preference was seen in all tested groups including the mTBI mice.
*p<0.05 vs. sham ^p<0.05 vs. MDMA
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Further analysis (LSD post hoc) showed that all groups had
impairments in their spatial learning and were different
from the sham mice (mTBI p<0.01, MDMA p=0.03, and
MDMA+mTBI p<0.01; Fig. 3b). On days 4 and 6, the
latencies in the sham group were significantly shorter than
those in all other groups (p<0.05) (Fig. 3b). At day 7, the
latencies in the sham group were significantly shorter
compared with the mTBI and MDMA+mTBI groups. The
probe phase measures the mice's ability to override their
previous learning and to change their exploration strategy to

find the new location of the water well. Group effects were
found at both 7 and 30 days post-injury [F(3,55)=3.38, p=
0.02] and [F(3,55)=6.87, p<0.01], respectively. No significant
day effect and no interactions were found. mTBI and MDMA
groups had longer latencies in reaching the new water well
compared with sham mice 7 days post-injury (LSD post hoc
p=0.002 and p=0.04, respectively). At 30 days post-injury,
the mTBI and MDMA+mTBI groups were impaired at
finding the new water well compared with sham mice (LSD
post hoc p<0.001 and p=0.035, respectively).
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Fig. 3 Dry maze test. a No significant group effects were found in the
test phase. In the probe phase, differences were between mTBI and
MDMA mice vs. sham [F(3,55)=3.38, p=0.02], LSD post hoc, p=
0.002 and p=0.04. b RMANOVA revealed significant group effects in
the test phase F(3,55)=4.62, p<0.01. All groups were different from

shammice (p<0.001, p=0.035, and p<0.001, respectively). In the probe
phase, differences were between mTBI and MDMA+mTBI mice
compare to sham F(3,55)=6.87, p<0.01. *p<0.05 mTBI vs sham #p<
0.05 MDMA vs. sham ^p<0.05 MDMA+mTBI vs. sham
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Biochemistry

In order to reveal the MDMA mechanism, we measured the
phosphorylation of the known pro-survival IGF-1R. Previ-
ous studies from our lab found elevation in IGF-1R
activation due to mTBI. In the present study, IGF-1R
phosphorylation was elevated in all tested groups as
indicated by one-way ANOVA (F(3,20)=16.78, p<0.01)
(Fig. 4). LSD post hoc analysis revealed that all tested
groups were different from sham mice but not different
from one another.

Phosphorylation of ERK1/2: The IGF-1R is known to
activate the extracellular regulated kinase (ERK1/2).
MDMA administration is also known to cause elevations
in ERK1/2 phophorylation. Following mTBI and MDMA
exposure, significant group effect was found in ERK1/2
phosphorylation [ERK 1, F(3,20)=8.07, p<0.01] and [ERK
2, F(3,20)=28.69, p<0.01]. Although all groups showed
elevations in ERK1/2 phosphorylation compared with the
sham mice, these differences reached statistical significance
only in the MDMA and mTBI groups (Fig. 5). No
differences were found between the mTBI group and the
MDMA+mTBI group (Fig. 5b).

Tyrosine hydroxylase (TH) levels: TH is a key enzyme
in the synthesis of catecholamines and its levels demon-
strate the presence of DA. MDMA in mice is known to
attenuate dopamine levels. Following mTBI, a significant

group effect was seen regarding TH levels [F(5,35)=2.61,
p=0.041] (Fig. 6). The decrease in TH levels were seen at
1 h post-mTBI till 72 h, LSD post hoc analysis revealed
significant decrease at 24 h post-injury, p<0.01 compared
with sham mice (Fig. 6). After determining a significant
decrease in TH levels, 24 h post-injury, we measured the
effect of MDMA (10 mg/kg) on mTBI-induced TH
decrease. Following administration of MDMA, 10 mg/kg
prior to mTBI, we revealed normal TH levels. A
significant group effect was seen [F(3,19)=3.61; p=0.032]
(Fig. 7). LSD post hoc analysis determined that differ-
ences were observed between mTBI mice compared with
sham and MDMA+mTBI mice (p<0.01 and p=0.02,
respectively).

Discussion

The present study reconfirms the observation that behav-
ioral deficits, such as impaired visual memory and
reduction in spatial memory performance, occur following
mTBI. However, a novel and intriguing finding is that the
significant differences seen between mTBI and sham mice
disappeared almost completely following pre-mTBI induc-
tion MDMA administration. The restored cognitive abilities
seen here may be related to the preserved TH levels found
following the MDMA administration.
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Fig. 4 Phosphorylation of IGF-1R. IGF-1R phosphorylation was
significantly elevated after mTBI. Hippocampus protein extracts were
subjected to gel electrophoresis, followed by immunoblot analysis using
antibodies against pIGF-1R and total IGF-1R. The level of phosphory-
lation was evaluated by densitometry analysis. The sham values were set
as 1, and the relative values of respective treatment were calculated

accordingly. Results indicate that all tested groups induced an
elevation in IGF-1R phosphorylation. One-way ANOVA revealed
group effect [F(3,20)=16.78, p<0.01], LSD post hoc test revealed
that differences were between sham vs. all other tested groups p<
0.01. Results are mean±SEM, n=6 mice. **p<0.01 vs. sham

Psychopharmacology (2011) 214:877–889 883



Very few studies have investigated the effects of ecstasy
on TBI and to the best of our knowledge, none in mice. The
current research was aimed at describing the effects of
MDMA on mTBI-induced behavioral and cognitive perfor-
mance as well as changes in some biochemical markers.
Our experimental procedure attempts to describe the
scenario in which a “drug user” might experience a TBI
in a motor vehicle collision while acutely intoxicated with
MDMA.

The World Health Organization has predicted that by the
year 2020, traffic accidents will be the third largest cause of
the global burden of diseases and injuries (Maas et al.
2008). Many of these motor-vehicle accidents involve
drivers under the influence of drugs. Epidemiological
studies and case studies have shown that MDMA can
impair driving abilities and cause reckless behavior such as
speeding and ignoring red traffic lights (Brookhuis et al.
2004; Drummer et al. 2003; Hooft and Vandevoorde 1994;
Kuypers et al. 2009; Logan and Couper 2001). The
growing numbers of MDMA users and TBI incidents
encourage this research.

Mice that experienced only the mTBI and did not receive
MDMA showed deficits in behavior performance compared
with the sham animals on the three cognitive tests utilized.
Lower visual and spatial memory were found in the NOR
and Y maze test. In the dry maze test, the impairments were
found in the spatial learning and in the probe phase. These
results support previous experiments performed in our
laboratory, in which similar post-injury learning deficits
were demonstrated (Milman et al. 2005; Zohar et al. 2003).
Regarding the biochemical tests, mTBI was found to cause
elevations in IGF-1R and ERK2 phosphorylation and a
decrease in tyrosin hydroxylase (TH) levels. These results
are in accordance with previous studies demonstrating time-
depended IGF-1R, Akt, and ERK1/2 activation after mTBI
(Rubovitch et al. 2010). The low levels of TH in the mice's
cortex were found 24 h post-injury. These results indicate
an alternation in the DA system following TBI as
previously reported in rats (Henry et al. 1997; McIntosh
et al. 1994; Wagner et al. 2009).

The mice that were subjected to MDMA alone showed
visual memory impairments and had low preference index
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Fig. 5 Phosphorylation of ERK1/2. The level of ERK phosphoryla-
tion was evaluated by densitometry analysis. The sham values were
set as 1, and the relative values of respective treatment were calculated
accordingly. a Elevation in phosphorylated ERK1 was seen mainly in
the MDMA group. One-way ANOVA showed significant group
effect: [F(3,20)=8.07, p<0.01], LSD post hoc, p<0.05. b All groups

showed elevations in phosphorylated ERK2 compare with sham
group, significant group effect [F(3,20)=28.69, p<0.01]. The MDMA
group was different from mTBI and MDMA+mTBI groups as well
LSD post hoc p<0.001 and p<0.001, respectively. Results are mean±
SEM of six mice. *p<0.05 vs. sham #p<0.05 vs. mTBI ^p<0.05 vs.
MDMA+mTBI
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in the NOR test. According to the Y maze, these mice had
no short-term spatial memory impairments (Figs. 1 and 2).
Long-term visual memory deficits caused by MDMA were
seen previously in rats but not in mice (Camarasa et al.
2008; McGregor et al. 2003; Piper and Meyer 2004). In the
dry maze, the MDMA mice spent more time looking for the
water well than the sham mice 7 days after administration;
these deficits reached statistical significance at 30 days
post-injection. Many previous studies used the Morris water
maze to access spatial learning after MDMA treatments
(Able et al. 2006; Skelton et al. 2008; Sprague et al. 2003).
In most of these experiments, MDMA didn't cause any
major impairment in rats' spatial learning. A possible
explanation for these discrepancies is the different effects
that MDMA has on mice compared to rats. MDMA in mice
is predominately selective to dopamine release and dopa-
mine transporter (DAT) inhibition, in the same time in rats,
the major activity of MDMA is on the serotonergic system
(Capela et al. 2009; Capela et al. 2007; Colado et al. 2001;
Colado et al. 2004). Even though both neurotransmitters are
related to learning and memory, impairments in spatial
learning are more influenced by dopamine than serotonin

(Granado et al. 2008; Kern et al.; Petrasek and Stuchlik
2009). Additionally, stimulation of dopamine receptors may
play an important role in synaptic plasticity and memory
storage of motor behaviors (Kleim et al. 2003; Simola et al.
2009).

When animals were given MDMA prior to the mTBI
procedure, their behavioral performance was significantly
improved compared with the mTBI mice. These mice
showed intact visual memory and undamaged spatial
memory on both the NOR test and the Y maze test (Figs. 1
and 2). No beneficial effect was seen following MDMA in
the mTBI mice in the dry maze test. Currently, no other
studies have been carried out combining MDMA and TBI
in mice. Recent studies from our lab combined alcohol
consumption before and during mTBI (Baratz et al. 2010)
or morphine injection prior to mTBI (Zohar et al. 2006). In
these experiments, both alcohol and morphine provided a
neuroprotective effect in mTBI mice. In another study,
administration of cocaine to pigs before fluid percussion
TBI did not have any harmful effects on physiologic
parameters such as cerebral blood flow or cerebral oxygen
extraction ratio (McBeth et al. 2005).
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Fig. 6 Tyrosine hydroxylase after mTBI. The level of TH was evaluated
by densitometry analysis. The sham values were set as 1, and the relative
values of respective treatment were calculated accordingly. Decreases in
TH levels were seen since 1 h post-injury; these decreases reached

significance 24 h post-mTBI. One-way ANOVA showed significant
group effect [F(5,35)=2.61; p=0.041], LSD post hoc revealed significant
differences p<0.01, 24 h post-injury, p<0.05. Results are mean±SEM
of 6–8 mice. **p<0.01 vs. sham
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In order to understand the mechanism of this potentially
beneficial effect seen after MDMA administration in mTBI
mice, we measured the activation of IGF-1R and ERK.
Given the role of IGF as a potential neuroprotective agent
(Cheng et al. 2003; Guan et al. 2003), it was hypothesized
that changes in its phosphorylation will underlie the
behavioral changes seen in the NOR and Y maze. Even
though cognitive improvements were seen following
MDMA injection to mTBI mice, no differences in the
activation of both IGF-1R and ERK were detected. This
indicates that the improvements in the behavioral tests
previously described may not be connected to IGF-1R or
ERK activation.

The results of the cognitive tests still raised the question
whether the presence of MDMA prior to mTBI exerts a real
beneficial effect. In addition, if MDMA and mTBI
separately cause cognitive impairments, and many previous
studies suggested that MDMA and mTBI share neuro-
destructive mechanisms, why does the combination of the
two factors not have a worsening effect? A report by Evans

et al. (1987), who administered dextroamphetamine (an
amphetamine analog) following closed head TBI, found
that it enhanced processing speed time and improved
memory. Previous case studies showed that “in hospital”
mortality rates were lower in people who consumed
amphetamines before accidental TBI (O'Phelan et al.
2008). Furthermore, amphetamine abuse in experimental
setting of TBI has been shown to accelerate recovery
(Dhillon et al. 1998). Studies on both animals and humans
have identified alterations in DA neurotransmission that
occur after TBI. These changes in DA may be crucial
factors in cognitive and behavioral deficits seen after TBI
(for review, see Bales et al. 2009).

In mice, the administration of MDMA produced a rapid
increase in the extracellular levels of dopamine with a peak
level occurring 1 h after injection (Camarero et al. 2002).
Regarding this hypothesis, we measured the levels of
tyrosine hydroxylase (TH) in the injured mice's cortex after
MDMA administration. TH is the key enzyme for synthe-
sizing dopamine (DA) in dopaminergic neurons and its
terminals (Haavik and Toska 1998; Kumer and Vrana 1996)
and was seen to be decreased in our model of mTBI. When
mice were administered with MDMA prior to the brain
injury, their TH levels were as high as sham mice, meaning,
that the dramatic decrease in TH levels seen after mTBI
(Fig. 6) was totally abolished after MDMA injection. This
restoration of TH levels may be a key explanation to the
cognitive improvements seen in these mice. Studies in both
animals and humans have identified a series of temporal
alterations in DA neurotransmission that occur after TBI
(Donnemiller et al. 2000; Wagner et al. 2005a; Wagner et
al. 2009; Wagner et al. 2005b; Yan et al. 2002; Yan et al.
2001). Decreases in DA overflow and alterations in both
DAT and TH expression were found to occur after injury.
Although in our study, the beneficial effect seen in
cognitive performance was due to a dangerous recreational
drug (MDMA), understanding the temporal alterations in
DA and the mechanism of dysfunction at a cellular level
will allow DAergic legal therapies to become potential
candidates for clinical use.

In summary, the results of the present study suggest that
MDMA has a protective effect on the cognitive impairment
resulting from mTBI in mice, an effect observed in most of
the cognitive tests. Furthermore, although the IGF-1R
pathway is activated both as a result of MDMA adminis-
tration or mTBI, it currently cannot explain the improve-
ment of the cognitive abilities of the mice subjected to
MDMA prior to mTBI. In contrary, the returning to normal
TH levels in MDMA+mTBI mice seem to be the cause of
the restored cognitive abilities demonstrated. Further
research, looking mainly at the dopamine levels and its
downstream agents is needed to confirm if this neurotrans-
mitter system is responsible for the behavioral effects seen.
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Fig. 7 Tyrosine hydroxylase 24 h after mTBI. Levels of TH were
significantly decreased 24 h after mTBI. Cortex protein extracts were
subjected to gel electrophoresis, followed by immunoblot analysis
using antibodies against TH and tubulin. The level of TH was
evaluated by densitometry analysis. Decreases in TH levels were
abolished when MDMA 10 mg/kg were administrated prior to injury.
One-way ANOVA showed significant group effect [F(3,19)=3.61, p=
0.032], LSD post hoc revealed that mTBI group was significantly
different from sham and MDMA+mTBI groups (p<0.01 and p=0.02,
respectively). Results are mean±SEM of 6–8 mice. **p<0.01 vs.
sham ^p<0.05 vs. MDMA+mTBI
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